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Abstract Customer Success is gaining priority for Organi-
zations in transforming to recurring revenue business model.
For this we need to shift our paradigm from being a “reactive
troubleshooting” to “proactively advising” our customers. As
part of this transformation various capabilities are being built,
to capture customer data, have smart agents that collect infor-
mation from customer networks to predict a failure before it
happens and to advise the customer of the resolution. Products
can be both hardware and software. It is trickier to predict
a failure or an issue beforehand in software when compared
to hardware because in hardware there are predefined set
of symptoms for a failure. In software, predicting an issue
beforehand means knowing and understanding what code is
going in with each commit, defect or an enhancement. In
most cases, defects found during internal testing, which are
often neglected, crop up as customer issues at a later point
in time. In this paper, we propose a solution to predict the
potential defects that the customer might find after the release
of the product using LSTM and CNN. We also predict the
time (weeks or months) within which the customer might face
this issue. This knowledge helps the teams to prioritize the
defects and proactively resolve them on time before going
live with known backlog of issues. Thus improving the
quality of product that we deliver. Post production this can
help proactively advise customers on these known issues that
he might face and recommend a software patch or upgrade
path. This paper is aimed at reducing internal failures cost
component of Cost of Quality leads to Customer Retention
and Success.
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1 Introduction

Cost of quality is a methodology that allows an organization
to determine the extent to which its resources are used for
activities that prevent poor quality, that appraise the quality
of the organization’s products or services, and that result
from internal and external failures. Having such information

allows an organization to determine the potential savings to be
gained by implementing process improvements. There are four
categories: internal failure costs (costs associated with defects
found before the customer receives the product or service),
external failure costs (costs associated with defects found after
the customer receives the product or service), appraisal costs
(costs incurred to determine the degree of conformance to
quality requirements) and prevention costs (costs incurred to
keep failure and appraisal costs to a minimum).

In Software Development Life Cycle, most of the issues
identified, starting from unit testing till beta testing, are
either marked unreproducible or deprioritized, because of
two reasons, either there is not enough data, or not enough
analysis is done to reproduce the issue. Any issue identified
earlier during development stage, is easier and cheaper to fix
and also the early detection and prioritization of the defects
ensures a product with good quality to end customers. There
have been studies which state the cost of fixing a defect as it
moves through the later stages of development life cycle grows
exponentially[1].

Figure 1. Phase/stage of software development in which defect is found

The National Institute of Standard Technology (NIST)
published a study in 2002 noting that the cost of fixing one
bug found in the production stage of software is 15 hours,
compared to five hours of effort if the same bug was found in
the coding stage[1]. The Systems Sciences Institute at IBM
has reported that the cost to fix an error found after product
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release was four to five times as much as one uncovered during
the design, and up to 100 times more than one identified in the
maintenance phase[1].

Table 1. Bug report attributes, N-categorical, C-continuous, T-text

Attribute (Type) Short Description
Component (N) Group or list of files with a

targeted funtioncality. This
represents a feature or set of
features.eg.aaa

Product (N) Product in which the defect or
issue is reported. This will also
capture platform eg. asr9k

Severity (C) Severity of the issue report. Takes
a value between 1-6. 1 being the
most sever issue

Assigner (N) Engineer who is assigned to work
on this issue

Month opened (C) Month in which the issue was
reported

Year opened (C) Year in which the issue was
reported

Submitter (N) Engineer who reported the issue
Status (N) Status of the issue reported. Eg.

Open, Closed, Duplicate,
Unreproducible

Headline (T) Short Description of the issues
Description (T) Detailed explanation of the issue,

failure logs, code chunks etc.
Found (N) Phase during which the issue was

found. Eg, development, sys-test,
customer-use

Priority (N) Development prirority for the bug
Category (N) Defect category. Eg. Infra,

performance
Attribute (T) Tags or key words associated
Submitted-on (C) Day the defect was submitted
IFD_CFD_Date (C) Day the internaly found defect

was also reported by customer or
the day this defect is marked as
duplicate of customer reported
issue

IFD_CFD_INDIC (N) This indicates whether the bug
became a potential customer issue
or not (1 or 0)

Apart from identifying an issue, it is equally important to
analyze, prioritize and fix these issues. Focus for our problem
is to help engineers with a recommended analysis on potential
issues that will be reported by the customers. We also provide
a solution to estimate the time it takes to to fix these issues
even before customer might report it.

For this, we look at historical data of defects/issues reported
during development stage and the issues which were reported
by the customer. In this data we consider various defect attri-

butes and unstructured data like the defect description, failure
logs etc., to extract the intent and sensitivity of the issue. This
is an ensemble model to predict a potential customer issue and
lead time before which it needs to be fixed.

2 Data Analysis
As it can be seen, the problem is two-fold. First is to predict

which internally found defect could be a potential customer
issue. Secondly, to predict how many weeks or months after a
release would the customer face the issue and report the same.

Figure 2. Data spreadIFD - internally found defect, CFD - customer found
defect, IFD_CFD - issue that was found internally was also found by customer

We collected historical data for 3 years for different Cisco
product families. This defect data has both internally found
issues, issues found during testing phases and customer found
issues, issues which customer has reported after using the
software. If the same internally found issue is reported by
customer as well, one of them would be reported as duplicate.
“Found” attribute in defect data will differentiate a customer
reported issue from internal found issue.

Data comprises of

• Continuous features

• Categorical features

• Text descriptions
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Continuous data here represents the date when the issue was re-
ported, the date when it got converted to a customer issue, age
of the defect, number of service request cases attached with it,
etc. Categorical variables define complexity, nature and im-
pact of the issue reported. Text data has a detailed description,
analysis and resolution of the issue.

The table [1] lists the fields in the dataset. Those marked
with (C) are continuous, (N) are categorical or numeric data
and (T) are text/ unstructured data. Continuous data helps in
identifying the significance of time for an event in this a custo-
mer reported issue. The last two variables IFD_CFD_Date and
IFD_CFD_INDIC are computed fields. Looking at a defects
life cycle, date when a internally found defect is converted as
customer found defect is calculated. IFD_CFD_INDIC is our
target variable that classifies a defect as a potential Customer
issue or not.

2,069,035 defects over a period of 3 years is considered for
this problem. Among these defects 148,188 were customer
issues and 17,759 were potential customer defects i.e, the de-
fects that were internally found but later reported as customer
issues as well. Below is the spread across multiple projects, it
can be seen that the % of potential customer data is less which
causes imbalance in data for classification. This is one of the
challenges with data and how it is handled is discussed in later
sections of this paper.

For the first use case, which is to classify a defect as potential
customer issue, two models are built,

• LSTM, a variant of Recurrent Neural Network

• XGBoost

The LSTM (Long Short-term memory) model is built for the
textual descriptions of the bugs in Keras. First defects are
sampled by project, to pre-process the text data by lemmati-
zing and tokenizing it and train the model. Before training the
LSTM words are embedded into vectors of same dimensions.
The categorical and continuous attributes in the dataset are fed
to XGboost model for training. Both these models output the
confidence or probability which we concoct using an ensemble
method and arrive at the final prediction of the propensity that
the bug will be reported by the customer.

The second use-case is to predict the time it takes for a custo-
mer to find and report the bug from its day of release. For this
Deep Neural Network regression model is used. This model
considers the continuous and categorical attributes mentioned
above and predicts the timeframe. Before training, attributes of
the defect are processed and converted into tensors for feature
extraction.

3 Prediction of Customer Found De-
fects

Prediction of internally found defects that have the pro-
pensity to become a customer found defect is classification
problem whether a customer will face the issue or not.

Major difficulties about this problem are the imbalances
in the dataset, variety of features (eg. text, continuous and
categorical) and dealing with missing values.

Our solution includes two models to be built, one for the tex-
tual description data and the other for continuous and categori-
cal features for each bug. Both these models output the proba-
bilities of the bug becoming a potential customer issue and we
then use feature-weighted linear stacking ensemble technique
to make the final prediction.

3.1 Text classification using CNN and LSTM

Major difficulty with textual descriptions is that they vary a
lot in length, have lots of references to product names, symbols
and abbreviations, email addresses and sometimes they are not
proper english sentences. Our solution deals with handling
such cases and building a convolutional neural network on top
of LSTM recurrent neural networks model.

The dataset contains 2,069,035 defects over a period of 3
years. Among these bugs 148,188 bugs are customer issues
(these include both customer-only found issues and internally
found issue that were also reported by customer). We split this
data into 70% training set and 30% validation set.

The data is loaded into Keras framework and preprocessed.
As a first step we build the vocabulary of words and also the
frequency matrix. The words are then replaced by integers
that indicate the ordered frequency of integers. Only top
10,000 words are considered. Now the text descriptions are a
sequence of integers.

We use a technique called word embedding where words are
encoded as real valued vectors in high dimensional space and
the similarity between words in terms of meaning translates
to closeness in the vector space. We map each word in the
vocabulary into a fixed length (64) real valued vector and
the other words which are not in the top 10,000 are replaced
with zeros. Also to deal with varying description length we
constrain each description to be 300 words, truncating long
descriptions and padding the shorter ones.

The exploratory data analysis on the description shows that
they have a one-dimensional spatial structure in the sequence
of words. This is the rational for using convolutional neural
network layer after the embedding layer and before the LSTM
layer, because CNN may be able to pick out the invariant fea-
tures for the bug descriptions and feed these features to LSTM
for the predictions[2]. We add convolutional layer with 64
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features and filter lengths of 5 and a max pool layer of length 2.

The next layer is the LSTM layer with 100 memory units.
Since our task is to predict if a bug gets converted or not, we
use a dense output layer with single neuron and a sigmoid
activation function to make 0 or 1 predictions for the two
classes. Dropout layer is also added between CNN and LSTM
layers and LSTM and Dense output layers to avoid overfitting
the problem.

We use a log loss function because it is a binary classifica-
tion along with ADAM optimization algorithm. The model is
run for just 100 epochs so that it won’t over-fit the problem.
The output for each defect/bug will be a probability of the bug
becoming a potential customer issue.

3.2 XGBoost for classification
XGBoost is an advanced implementation of gradient boos-

ting algorithm[3]. We build this model using the continuous
and categorical features in our dataset. The major challenge
for building this model is the imbalance in the dataset. Bugs
which are internally found rarely get converted to customer
issue, that is only 1-18% bugs get converted2. This imbalance
effects the algorithm to not give accurate results.

To deal with this we worked on random under-sampling of
the majority class, random over-sampling of the minority class
and cluster based over-sampling. But all these methods failed
resulting the model to over-fit and under-perform, because in
case of under-sampling we were missing on important data
points and in case of over sampling we merely duplicated the
data points from the minority class.

We then adapted an algorithm called Synthetic Minority
Over-Sampling Technique (SMOTE), which is an informed
over-sampling method[4]. We followed this technique to avoid
the problem of overfitting which occurred when the exact
replicas or duplicates of minority class were added to the da-
taset. In this algorithm a subset of minority class is taken and
new synthetic similar instances were created. These synthetic
instances are then added to the dataset. The advantage of
this technique is that there is no loss of information and no
duplicates as well.

SMOTE works by calculating the distance between the
majority class datapoints and minority class data points. The
continuous features can easily be synthetically generated but
for categorical variables in order to be able to calculate such
distances we need to vectorize them first. We convert the
categorical features into one hot vectors and generate the
synthetic data points.

Imputing the missing values with XGBoost algorithm is
easy. We transform the features with missing values into
matrix and then XGBoost captures the trends in missing values
and handle them internally. Before training the model, we first
run a feature importance plot (see 3, 4) to know the useful

features. We tune the parameters using a grid search on a set
of parameter values by evaluating them against the validation
set.

For validation of the model we used a 5-fold-cross
validation[5]. The data is broken into 5 sets of equal size. The
model is trained using 4 datasets and tested with the remaining
dataset. The process is repeated 5 times with each of 5 datasets
as validation set. The results of the 5 folds then are averaged to
evaluate the performance of the model. This process is run for
different parameter sets and the most optimal one is selected.

Confusion matrix (see 5) is plotted on the validation set. Af-
ter the training and validation, we predict the outputs for the
testing dataset. The output is a probability of that bug beco-
ming a customer found defect.

3.3 Evaluation

Ensemble method is designed to boost predictive accuracy
by blending the predictions of these two machine learning
models. The output probabilities from both our models above
are combined to make a final prediction. For this we use
XGBoost model[6]. This model finds the patterns in the output
probabilities and makes final prediction. The parameter tuning
for this is determined using the meta-data and the grid search.

We use precision (P), recall (R) and the area under the re-
ceiver operating characteristic curve (AUC) statistic for me-
asuring the performance of the prediction models. Precision
denotes the proportion of correctly predicted customer found
defects, P = TP/(TP + FP). Recall represents the proportion of
true positives of all customer found defects, R = TP/(TP + FN).
AUC can be interpreted as the probability, that, when randomly
selecting a positive and negative example the model assigns a
higher score to positive example[7]. In our case the positive
example is a bug which is customer found defect.

4 Prediction of time to find a bug

Prediction of time (weeks or months) taken by a customer to
find an internally found bug is a regression problem where we
use categorical and continuous features like the priority of the
bug, status, component it belongs to, project it is from, month
and year it was created, the assigner and submitter of the bug.
Our prediction variable here is the number of days between
the date it was found by the internal testing team and the date
customer has reported it. A deep neural networks regressor
model is built in TensorFlow framework[8].

4.1 Feature selection and preprocessing

The data is loaded into TensorFlow. The correlation tests
and feature importance graphs are performed and plotted to
understand which features are important and which are redun-
dant. After that we filter the features and store categorical,
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continuous and target feature names in different variables.

When building a model in TensorFlow the input data needs
to be specified by an Input Builder function which constructs
the input data in the form of Tensors. The continuous features
are stored in constant tensors whereas the categorical features
are stored in sparse tensors. Once the input for TensorFlow
graph has been constructed we do feature selection and feature
engineering for the model.

4.2 Deep Neural Network Architecture

The 3-layer deep neural network regressor model is built
and trained in TensorFlow to predict the number of days it
takes a customer to report a bug that was internally found
during testing. Building a model in TensorFlow is nothing but
building a computational graph which can be any mathemati-
cal operation that the TensorFlow supports[9].

Our model has an input layer of fixed size, 3 hidden layers
with 64, 32 and 10 neurons respectively and a single output
neuron which outputs a continuous value. We define mean
sum of squared error as our loss function and set the opti-
mizer, that is, back propagation algorithm as ADAM optimizer.

Once the graph is built, we initialize the weights and bia-
ses to compile the variables. To train the model, we create a
session and run the graph in that session. The training data is
first divided into batches so that it can be ingested. The ba-
tches are first preprocessed, augmented and then fed into the
deep neural network for training. The model then gets trained
incrementally. The execution happens for 1000 epochs. The
model is validated against the validation set. After performing
the training, the model is stored in a directory so that it can be
later used for prediction on testing data.

5 Results

The model is tested acroos 11 projects over 1 million bugs,
The results for a single project accross the three different mo-
dels is shown below.
The relationship and importance of the above features were
considered for the prediction of a defect becoming a potential
customer issue and for the time it takes for a customer to find
and report this issue from the day of release.

5.1 Classification of customer issue using XG-
Boost

Figure 3 intuitively explains what features will be useful for
classifying a bug becoming potential customer issue. So in our
XGBoost model, we considered component, status, product,
assigner and submitter features.

A grid search run has been performed on the model to tune
the parameters for a high accuracy and precision.

Figure 3. Importance plot for classification of customer issue

Figure 4. Importance plot for prediction of time to be taken by a customer
to find the issue
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Figure 5. Confusion matrix for XGBoost model

The figure 5 represents a confusion matrix for test set,
where True is the actual class that bug belongs to and Pred is
the model prediction.

We use sensitivity, specificity and accuracy metrics to evalu-
ate the model. The precision of the model correctly predicting
a customer issue is

Specificity = TN
TN+FP = 0.912

Sensitivity/Recall = TP
TP+FN = 0.573

Accuracy= TP+TN
TP+TN+FN+FP = 0.905

That is, the model is 90.5% accurate while predicting if a
bug is a customer issue or not and the true positive rate for
predicting a customer issue is 0.573.

5.2 Classification of customer issue using CNN
and LSTM

The texual descriptions of the defects/bugs are used for the
classification of potential customer issue. The words in the
descriptions are converted into word embeddings and passed
to a convolutional neural networks where the network picks
the invariant features and passes them to an LSTM layer. The
final output is the probability of a bug becoming a potencial
customer issue.

Figure 6, shows the confusion matrix of this CNN-LSTM
model for the validation set,

Sensitivity, Specificity and Accuracy are calculated as the
metrics of accuracy of the model. The model’s sensitivity is
0.709, specificity is 0.932 and accuracy is 0.925. The results
show that the model is highly precise while predicting a custo-
mer issue and the overall accuracy of the model is,

Specificity= TN
TN+FP =0.932

Figure 6. Confusion matrix for CNN - LSTM model

Sensitivity/Recall = TP
TP+FN =0.709

Accuracy = TP+TN
TP+TN+FP+FN = 92.5%

That is, the model is 73.1% accurate while predicting if a
bug is a customer issue or not and the true positive rate for
predicting a customer issue is 0.709.

5.3 Ensemble predictions

Extreme gradient boosting model is used to make the final
prediction regarding the propensity of a bug becoming a custo-
mer issue. This model runs by blending the predictions of the
two models.

Figure below, shows the confusion matrix of this XGBoost
ensemble model for the validation set,

Figure 7. Confusion matrix for Ensemble Model
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Precision, recall and F-score are calculated as the metrics of
accuracy of the model. The model’s specificity is 0.969, recall
is 0.967. The results show that the model is highly precise
while predicting a customer issue and the overall accuracy of
the model is,

Specificity = TN
TN+FP = 0.969

Sensitivity/Recall = TP
TP+FN = 0.967

Accuracy = TP+TN
TP+TN+FP+FN = 97.54%

That is, the model is 97.54% accurate while predicting if a
bug will become a customer issue or not and the true positive
rate for predicting a customer issue is 0.967.

We see that out of 1412 customer issues in total, we pre-
dicted 1365 accurately and 47 were misclassified and in the
case of predicting a non-customer issue the model was correct
for 76075 bugs and wrong for 2396 bugs.

5.4 Prediction of time to be taken by a customer
to find the issue using Deep Neural Network

Figure 4, shows that the useful features for the prediction
of the number days are, month in which the release was
made, product in which the issue was found, severity of the
defect/bug, status of the defect, and component it belongs to.
So we consider all these features for the model prediction.

The 3-layer Deep Neural network regressor model is built
and trained to predict the number of days it takes a customer
to find an issue from the date of release. The data set has 1033
customer issues.

The loss function is defined as the Mean Sum of Squared
Error. ADAM optimizer is uesd for the backpropagation algo-
rithm. The model is run for 1000 epochs and the loss for the
final step is 33.1126 for the training dataset. The validation
dataset has a loss of 831.94. The mean difference in the pre-
dicted number of days and the actual number of days it took
was around 20 days. So whenever the model makes a pre-
diction of the number of days we consider a variance 20 days.

6 Conclusion and Future work
The models were run for different set of products and

platforms and classification had 97.5% accuracy and were able
to predict the time frame that the issue would be uncovered by
customer with a variance of 20 days. The model training is run
on monthly basis and it is tested weekly on all the new bugs
that are filed in that particular week.

This approach can be taken with any products that follow
the typical development life cycle and defect management
system. A standard quality management system captures the
details of the issue in the same format of summary, description,
severity, logs, failure notes etc. Before the go-live the model

can be run on the all internally found defects to identify which

could possibly impact the cost of quality post production.

Post production, most of the time is spent in figuring if it is a
known issue by scanning through a sea of internal failures de-
fects. This projected list of probable customer issues will have
a targeted list to work with for the Customer Facing team, in
quickly apprising the customer of the issue and possible reso-
lution time.
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